This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimneg.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| rlimneg.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| Assertion | rlimneg | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ - 𝐵 ) ⇝𝑟 - 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimneg.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | rlimneg.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℂ ) | |
| 4 | 1 2 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 6 | dmmptg | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 | rlimss | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 10 | 7 9 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 11 | 0cn | ⊢ 0 ∈ ℂ | |
| 12 | rlimconst | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑘 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 14 | 3 4 13 2 | rlimsub | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) ⇝𝑟 ( 0 − 𝐶 ) ) |
| 15 | df-neg | ⊢ - 𝐵 = ( 0 − 𝐵 ) | |
| 16 | 15 | mpteq2i | ⊢ ( 𝑘 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0 − 𝐵 ) ) |
| 17 | df-neg | ⊢ - 𝐶 = ( 0 − 𝐶 ) | |
| 18 | 14 16 17 | 3brtr4g | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ - 𝐵 ) ⇝𝑟 - 𝐶 ) |