This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 2-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotasv2d.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| riotasv2d.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝐹 ) | ||
| riotasv2d.3 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) | ||
| riotasv2d.4 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | ||
| riotasv2d.5 | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| riotasv2d.6 | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → 𝐶 = 𝐹 ) | ||
| riotasv2d.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| riotasv2d.8 | ⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) | ||
| riotasv2d.9 | ⊢ ( 𝜑 → 𝜒 ) | ||
| Assertion | riotasv2d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝐷 = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv2d.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | riotasv2d.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝐹 ) | |
| 3 | riotasv2d.3 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜒 ) | |
| 4 | riotasv2d.4 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | |
| 5 | riotasv2d.5 | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 6 | riotasv2d.6 | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → 𝐶 = 𝐹 ) | |
| 7 | riotasv2d.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 8 | riotasv2d.8 | ⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) | |
| 9 | riotasv2d.9 | ⊢ ( 𝜑 → 𝜒 ) | |
| 10 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 11 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝐸 ∈ 𝐵 ) |
| 12 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝜒 ) |
| 13 | eleq1 | ⊢ ( 𝑦 = 𝐸 → ( 𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵 ) ) |
| 15 | 14 5 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 16 | 6 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( 𝐷 = 𝐶 ↔ 𝐷 = 𝐹 ) ) |
| 17 | 15 16 | imbi12d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐸 ) → ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ V ) ∧ 𝑦 = 𝐸 ) → ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ↔ ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) ) |
| 19 | 4 7 | riotasvd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |
| 20 | nfv | ⊢ Ⅎ 𝑦 𝐴 ∈ V | |
| 21 | 1 20 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝐴 ∈ V ) |
| 22 | nfcvd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → Ⅎ 𝑦 𝐸 ) | |
| 23 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑦 𝐸 ∈ 𝐵 ) | |
| 24 | 23 3 | nfand | ⊢ ( 𝜑 → Ⅎ 𝑦 ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) ) |
| 25 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) | |
| 26 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 27 | 25 26 | nfriota | ⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 28 | 1 4 | nfceqdf | ⊢ ( 𝜑 → ( Ⅎ 𝑦 𝐷 ↔ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) ) |
| 29 | 27 28 | mpbiri | ⊢ ( 𝜑 → Ⅎ 𝑦 𝐷 ) |
| 30 | 29 2 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑦 𝐷 = 𝐹 ) |
| 31 | 24 30 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑦 ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → Ⅎ 𝑦 ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 33 | 11 18 19 21 22 32 | vtocldf | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( ( 𝐸 ∈ 𝐵 ∧ 𝜒 ) → 𝐷 = 𝐹 ) ) |
| 34 | 11 12 33 | mp2and | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → 𝐷 = 𝐹 ) |
| 35 | 10 34 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝐷 = 𝐹 ) |