This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 2-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotasv2d.1 | |- F/ y ph |
|
| riotasv2d.2 | |- ( ph -> F/_ y F ) |
||
| riotasv2d.3 | |- ( ph -> F/ y ch ) |
||
| riotasv2d.4 | |- ( ph -> D = ( iota_ x e. A A. y e. B ( ps -> x = C ) ) ) |
||
| riotasv2d.5 | |- ( ( ph /\ y = E ) -> ( ps <-> ch ) ) |
||
| riotasv2d.6 | |- ( ( ph /\ y = E ) -> C = F ) |
||
| riotasv2d.7 | |- ( ph -> D e. A ) |
||
| riotasv2d.8 | |- ( ph -> E e. B ) |
||
| riotasv2d.9 | |- ( ph -> ch ) |
||
| Assertion | riotasv2d | |- ( ( ph /\ A e. V ) -> D = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv2d.1 | |- F/ y ph |
|
| 2 | riotasv2d.2 | |- ( ph -> F/_ y F ) |
|
| 3 | riotasv2d.3 | |- ( ph -> F/ y ch ) |
|
| 4 | riotasv2d.4 | |- ( ph -> D = ( iota_ x e. A A. y e. B ( ps -> x = C ) ) ) |
|
| 5 | riotasv2d.5 | |- ( ( ph /\ y = E ) -> ( ps <-> ch ) ) |
|
| 6 | riotasv2d.6 | |- ( ( ph /\ y = E ) -> C = F ) |
|
| 7 | riotasv2d.7 | |- ( ph -> D e. A ) |
|
| 8 | riotasv2d.8 | |- ( ph -> E e. B ) |
|
| 9 | riotasv2d.9 | |- ( ph -> ch ) |
|
| 10 | elex | |- ( A e. V -> A e. _V ) |
|
| 11 | 8 | adantr | |- ( ( ph /\ A e. _V ) -> E e. B ) |
| 12 | 9 | adantr | |- ( ( ph /\ A e. _V ) -> ch ) |
| 13 | eleq1 | |- ( y = E -> ( y e. B <-> E e. B ) ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ y = E ) -> ( y e. B <-> E e. B ) ) |
| 15 | 14 5 | anbi12d | |- ( ( ph /\ y = E ) -> ( ( y e. B /\ ps ) <-> ( E e. B /\ ch ) ) ) |
| 16 | 6 | eqeq2d | |- ( ( ph /\ y = E ) -> ( D = C <-> D = F ) ) |
| 17 | 15 16 | imbi12d | |- ( ( ph /\ y = E ) -> ( ( ( y e. B /\ ps ) -> D = C ) <-> ( ( E e. B /\ ch ) -> D = F ) ) ) |
| 18 | 17 | adantlr | |- ( ( ( ph /\ A e. _V ) /\ y = E ) -> ( ( ( y e. B /\ ps ) -> D = C ) <-> ( ( E e. B /\ ch ) -> D = F ) ) ) |
| 19 | 4 7 | riotasvd | |- ( ( ph /\ A e. _V ) -> ( ( y e. B /\ ps ) -> D = C ) ) |
| 20 | nfv | |- F/ y A e. _V |
|
| 21 | 1 20 | nfan | |- F/ y ( ph /\ A e. _V ) |
| 22 | nfcvd | |- ( ( ph /\ A e. _V ) -> F/_ y E ) |
|
| 23 | nfvd | |- ( ph -> F/ y E e. B ) |
|
| 24 | 23 3 | nfand | |- ( ph -> F/ y ( E e. B /\ ch ) ) |
| 25 | nfra1 | |- F/ y A. y e. B ( ps -> x = C ) |
|
| 26 | nfcv | |- F/_ y A |
|
| 27 | 25 26 | nfriota | |- F/_ y ( iota_ x e. A A. y e. B ( ps -> x = C ) ) |
| 28 | 1 4 | nfceqdf | |- ( ph -> ( F/_ y D <-> F/_ y ( iota_ x e. A A. y e. B ( ps -> x = C ) ) ) ) |
| 29 | 27 28 | mpbiri | |- ( ph -> F/_ y D ) |
| 30 | 29 2 | nfeqd | |- ( ph -> F/ y D = F ) |
| 31 | 24 30 | nfimd | |- ( ph -> F/ y ( ( E e. B /\ ch ) -> D = F ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ A e. _V ) -> F/ y ( ( E e. B /\ ch ) -> D = F ) ) |
| 33 | 11 18 19 21 22 32 | vtocldf | |- ( ( ph /\ A e. _V ) -> ( ( E e. B /\ ch ) -> D = F ) ) |
| 34 | 11 12 33 | mp2and | |- ( ( ph /\ A e. _V ) -> D = F ) |
| 35 | 10 34 | sylan2 | |- ( ( ph /\ A e. V ) -> D = F ) |