This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of riotasv . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotasvd.1 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | |
| riotasvd.2 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| Assertion | riotasvd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasvd.1 | ⊢ ( 𝜑 → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) | |
| 2 | riotasvd.2 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝐷 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ) |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → 𝐷 ∈ 𝐴 ) |
| 5 | 3 4 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ∈ 𝐴 ) |
| 6 | riotaclbgBAD | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ∈ 𝐴 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ∈ 𝐴 ) ) |
| 8 | 5 7 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 9 | riotasbc | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) → [ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → [ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 11 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑧 = 𝐶 ) ) | |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜓 → 𝑥 = 𝐶 ) ↔ ( 𝜓 → 𝑧 = 𝐶 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑧 = 𝐶 ) ) ) |
| 14 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 16 | 14 15 | nfriota | ⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 17 | 16 | nfeq2 | ⊢ Ⅎ 𝑦 𝑧 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) |
| 18 | eqeq1 | ⊢ ( 𝑧 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) → ( 𝑧 = 𝐶 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) | |
| 19 | 18 | imbi2d | ⊢ ( 𝑧 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) → ( ( 𝜓 → 𝑧 = 𝐶 ) ↔ ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) |
| 20 | 17 19 | ralbid | ⊢ ( 𝑧 = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑧 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) |
| 21 | 13 20 | sbcie2g | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) ∈ 𝐴 → ( [ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) |
| 22 | 5 21 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) |
| 23 | 10 22 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) |
| 24 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) → ( 𝑦 ∈ 𝐵 → ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ∈ 𝐵 → ( 𝜓 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) ) |
| 26 | 25 | impd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) |
| 27 | 3 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐷 = 𝐶 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝑥 = 𝐶 ) ) = 𝐶 ) ) |
| 28 | 26 27 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) → 𝐷 = 𝐶 ) ) |