This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011) (Revised by NM, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotass2 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss2 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) | |
| 3 | riotasbc | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) | |
| 4 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) | |
| 5 | rspsbc | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) | |
| 6 | sbcimg | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) ) ) | |
| 7 | 5 6 | sylibd | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 9 | 3 8 | mpid | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| 10 | 1 2 9 | sylc | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) |
| 11 | 1 4 | syl | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) |
| 12 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ) ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ) ) |
| 14 | 11 13 | mpd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ) |
| 15 | simprr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) | |
| 16 | nfriota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
| 17 | 16 | nfsbc1 | ⊢ Ⅎ 𝑥 [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 |
| 18 | sbceq1a | ⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ) ) | |
| 19 | 16 17 18 | riota2f | ⊢ ( ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 20 | 14 15 19 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 21 | 10 20 | mpbid | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |