This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reuss2 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) | |
| 5 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 6 | pm3.2 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝜓 → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
| 7 | 6 | imim2d | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) ) |
| 8 | 5 7 | syl6 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) ) ) |
| 9 | 8 | a2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) ) ) |
| 10 | 9 | imp4a | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) ) |
| 11 | 10 | alimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 13 | 4 12 | sylan2b | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 14 | euimmo | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) → ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 16 | df-eu | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 17 | 16 | simplbi2 | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 18 | 15 17 | syl9 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 19 | 18 | imp32 | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 20 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| 22 | 3 21 | sylan2b | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |