This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotass | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) | |
| 2 | riotasbc | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → 𝐴 ⊆ 𝐵 ) | |
| 5 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) | |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) |
| 7 | 4 6 | sseldd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) | |
| 9 | nfriota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
| 10 | 9 | nfsbc1 | ⊢ Ⅎ 𝑥 [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 |
| 11 | sbceq1a | ⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜑 ↔ [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) ) | |
| 12 | 9 10 11 | riota2f | ⊢ ( ( ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 13 | 7 8 12 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 14 | 3 13 | mpbid | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ∈ 𝐵 𝜑 ) ) |