This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmtfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cmtfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cmtfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| cmtfval.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| cmtfval.c | ⊢ 𝐶 = ( cm ‘ 𝐾 ) | ||
| Assertion | cmtfvalN | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cmtfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | cmtfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | cmtfval.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | cmtfval.c | ⊢ 𝐶 = ( cm ‘ 𝐾 ) | |
| 6 | elex | ⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) | |
| 7 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑝 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 10 | 8 | eleq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑦 ∈ ( Base ‘ 𝑝 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 11 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ( join ‘ 𝐾 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ∨ ) |
| 13 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ( meet ‘ 𝐾 ) ) | |
| 14 | 13 3 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ∧ ) |
| 15 | 14 | oveqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) = ( 𝑥 ∧ 𝑦 ) ) |
| 16 | eqidd | ⊢ ( 𝑝 = 𝐾 → 𝑥 = 𝑥 ) | |
| 17 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ( oc ‘ 𝐾 ) ) | |
| 18 | 17 4 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ⊥ ) |
| 19 | 18 | fveq1d | ⊢ ( 𝑝 = 𝐾 → ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) = ( ⊥ ‘ 𝑦 ) ) |
| 20 | 14 16 19 | oveq123d | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) = ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) |
| 21 | 12 15 20 | oveq123d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ↔ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) ) |
| 23 | 9 10 22 | 3anbi123d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) ) ) |
| 24 | 23 | opabbidv | ⊢ ( 𝑝 = 𝐾 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ) |
| 25 | df-cmtN | ⊢ cm = ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } ) | |
| 26 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) ) | |
| 27 | 26 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } |
| 28 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 29 | 28 28 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 30 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ⊆ ( 𝐵 × 𝐵 ) | |
| 31 | 29 30 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ∈ V |
| 32 | 27 31 | eqeltri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ∈ V |
| 33 | 24 25 32 | fvmpt | ⊢ ( 𝐾 ∈ V → ( cm ‘ 𝐾 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ) |
| 34 | 5 33 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ) |
| 35 | 6 34 | syl | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ ( ⊥ ‘ 𝑦 ) ) ) ) } ) |