This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement contraposition law. ( negcon2 analog.) (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opcon2b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | 1 2 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 5 | 1 2 | opcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = ( ⊥ ‘ 𝑋 ) ) ) |
| 6 | 4 5 | syld3an3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = ( ⊥ ‘ 𝑋 ) ) ) |
| 7 | 1 2 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = ( ⊥ ‘ 𝑋 ) ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) ) |
| 10 | 6 9 | bitrd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) ) |