This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element { 0 } . (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring1eq0.b | ||
| ring1eq0.u | |||
| ring1eq0.z | |||
| Assertion | ring1eq0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1eq0.b | ||
| 2 | ring1eq0.u | ||
| 3 | ring1eq0.z | ||
| 4 | simpr | ||
| 5 | 4 | oveq1d | |
| 6 | 4 | oveq1d | |
| 7 | simpl1 | ||
| 8 | simpl2 | ||
| 9 | eqid | ||
| 10 | 1 9 3 | ringlz | |
| 11 | 7 8 10 | syl2anc | |
| 12 | simpl3 | ||
| 13 | 1 9 3 | ringlz | |
| 14 | 7 12 13 | syl2anc | |
| 15 | 11 14 | eqtr4d | |
| 16 | 6 15 | eqtr4d | |
| 17 | 5 16 | eqtr4d | |
| 18 | 1 9 2 | ringlidm | |
| 19 | 7 8 18 | syl2anc | |
| 20 | 1 9 2 | ringlidm | |
| 21 | 7 12 20 | syl2anc | |
| 22 | 17 19 21 | 3eqtr3d | |
| 23 | 22 | ex |