This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsscmap.u | |- ( ph -> U e. V ) |
|
| rhmsscmap.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| Assertion | rhmsscmap | |- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsscmap.u | |- ( ph -> U e. V ) |
|
| 2 | rhmsscmap.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 3 | inss2 | |- ( Ring i^i U ) C_ U |
|
| 4 | 2 3 | eqsstrdi | |- ( ph -> R C_ U ) |
| 5 | eqid | |- ( Base ` a ) = ( Base ` a ) |
|
| 6 | eqid | |- ( Base ` b ) = ( Base ` b ) |
|
| 7 | 5 6 | rhmf | |- ( h e. ( a RingHom b ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
| 8 | simpr | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h : ( Base ` a ) --> ( Base ` b ) ) |
|
| 9 | fvex | |- ( Base ` b ) e. _V |
|
| 10 | fvex | |- ( Base ` a ) e. _V |
|
| 11 | 9 10 | pm3.2i | |- ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) |
| 12 | elmapg | |- ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
|
| 13 | 11 12 | mp1i | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> ( h e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> h : ( Base ` a ) --> ( Base ` b ) ) ) |
| 14 | 8 13 | mpbird | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ h : ( Base ` a ) --> ( Base ` b ) ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 15 | 14 | ex | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h : ( Base ` a ) --> ( Base ` b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 16 | 7 15 | syl5 | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( h e. ( a RingHom b ) -> h e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
| 17 | 16 | ssrdv | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a RingHom b ) C_ ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 18 | ovres | |- ( ( a e. R /\ b e. R ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) = ( a RingHom b ) ) |
| 20 | eqidd | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 21 | fveq2 | |- ( y = b -> ( Base ` y ) = ( Base ` b ) ) |
|
| 22 | fveq2 | |- ( x = a -> ( Base ` x ) = ( Base ` a ) ) |
|
| 23 | 21 22 | oveqan12rd | |- ( ( x = a /\ y = b ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 24 | 23 | adantl | |- ( ( ( ph /\ ( a e. R /\ b e. R ) ) /\ ( x = a /\ y = b ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 25 | 4 | sseld | |- ( ph -> ( a e. R -> a e. U ) ) |
| 26 | 25 | com12 | |- ( a e. R -> ( ph -> a e. U ) ) |
| 27 | 26 | adantr | |- ( ( a e. R /\ b e. R ) -> ( ph -> a e. U ) ) |
| 28 | 27 | impcom | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> a e. U ) |
| 29 | 4 | sseld | |- ( ph -> ( b e. R -> b e. U ) ) |
| 30 | 29 | com12 | |- ( b e. R -> ( ph -> b e. U ) ) |
| 31 | 30 | adantl | |- ( ( a e. R /\ b e. R ) -> ( ph -> b e. U ) ) |
| 32 | 31 | impcom | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> b e. U ) |
| 33 | ovexd | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( ( Base ` b ) ^m ( Base ` a ) ) e. _V ) |
|
| 34 | 20 24 28 32 33 | ovmpod | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
| 35 | 17 19 34 | 3sstr4d | |- ( ( ph /\ ( a e. R /\ b e. R ) ) -> ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
| 36 | 35 | ralrimivva | |- ( ph -> A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) |
| 37 | rhmfn | |- RingHom Fn ( Ring X. Ring ) |
|
| 38 | 37 | a1i | |- ( ph -> RingHom Fn ( Ring X. Ring ) ) |
| 39 | inss1 | |- ( Ring i^i U ) C_ Ring |
|
| 40 | 2 39 | eqsstrdi | |- ( ph -> R C_ Ring ) |
| 41 | xpss12 | |- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
|
| 42 | 40 40 41 | syl2anc | |- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
| 43 | fnssres | |- ( ( RingHom Fn ( Ring X. Ring ) /\ ( R X. R ) C_ ( Ring X. Ring ) ) -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
|
| 44 | 38 42 43 | syl2anc | |- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 45 | eqid | |- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
|
| 46 | ovex | |- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
|
| 47 | 45 46 | fnmpoi | |- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) |
| 48 | 47 | a1i | |- ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) ) |
| 49 | elex | |- ( U e. V -> U e. _V ) |
|
| 50 | 1 49 | syl | |- ( ph -> U e. _V ) |
| 51 | 44 48 50 | isssc | |- ( ph -> ( ( RingHom |` ( R X. R ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) <-> ( R C_ U /\ A. a e. R A. b e. R ( a ( RingHom |` ( R X. R ) ) b ) C_ ( a ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) b ) ) ) ) |
| 52 | 4 36 51 | mpbir2and | |- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |