This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | |- B = ( Base ` R ) |
|
| rhmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | rhmf1o | |- ( F e. ( R RingHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RingHom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | |- B = ( Base ` R ) |
|
| 2 | rhmf1o.c | |- C = ( Base ` S ) |
|
| 3 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 4 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 5 | 3 4 | jca | |- ( F e. ( R RingHom S ) -> ( S e. Ring /\ R e. Ring ) ) |
| 6 | 5 | adantr | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> ( S e. Ring /\ R e. Ring ) ) |
| 7 | simpr | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
|
| 8 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> F e. ( R GrpHom S ) ) |
| 10 | 1 2 | ghmf1o | |- ( F e. ( R GrpHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S GrpHom R ) ) ) |
| 11 | 10 | bicomd | |- ( F e. ( R GrpHom S ) -> ( `' F e. ( S GrpHom R ) <-> F : B -1-1-onto-> C ) ) |
| 12 | 9 11 | syl | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( S GrpHom R ) <-> F : B -1-1-onto-> C ) ) |
| 13 | 7 12 | mpbird | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( S GrpHom R ) ) |
| 14 | eqidd | |- ( F e. ( R RingHom S ) -> F = F ) |
|
| 15 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 16 | 15 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 17 | 16 | a1i | |- ( F e. ( R RingHom S ) -> B = ( Base ` ( mulGrp ` R ) ) ) |
| 18 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 19 | 18 2 | mgpbas | |- C = ( Base ` ( mulGrp ` S ) ) |
| 20 | 19 | a1i | |- ( F e. ( R RingHom S ) -> C = ( Base ` ( mulGrp ` S ) ) ) |
| 21 | 14 17 20 | f1oeq123d | |- ( F e. ( R RingHom S ) -> ( F : B -1-1-onto-> C <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 22 | 21 | biimpa | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) |
| 23 | 15 18 | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 24 | 23 | adantr | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 25 | eqid | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
|
| 26 | eqid | |- ( Base ` ( mulGrp ` S ) ) = ( Base ` ( mulGrp ` S ) ) |
|
| 27 | 25 26 | mhmf1o | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> ( F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) <-> `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) ) ) |
| 28 | 27 | bicomd | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> ( `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 29 | 24 28 | syl | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 30 | 22 29 | mpbird | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) ) |
| 31 | 13 30 | jca | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( S GrpHom R ) /\ `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) ) ) |
| 32 | 18 15 | isrhm | |- ( `' F e. ( S RingHom R ) <-> ( ( S e. Ring /\ R e. Ring ) /\ ( `' F e. ( S GrpHom R ) /\ `' F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` R ) ) ) ) ) |
| 33 | 6 31 32 | sylanbrc | |- ( ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( S RingHom R ) ) |
| 34 | 1 2 | rhmf | |- ( F e. ( R RingHom S ) -> F : B --> C ) |
| 35 | 34 | adantr | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> F : B --> C ) |
| 36 | 35 | ffnd | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> F Fn B ) |
| 37 | 2 1 | rhmf | |- ( `' F e. ( S RingHom R ) -> `' F : C --> B ) |
| 38 | 37 | adantl | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> `' F : C --> B ) |
| 39 | 38 | ffnd | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> `' F Fn C ) |
| 40 | dff1o4 | |- ( F : B -1-1-onto-> C <-> ( F Fn B /\ `' F Fn C ) ) |
|
| 41 | 36 39 40 | sylanbrc | |- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) -> F : B -1-1-onto-> C ) |
| 42 | 33 41 | impbida | |- ( F e. ( R RingHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RingHom R ) ) ) |