This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | rexuzre | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | eluzelre | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) | |
| 3 | 2 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → 𝑗 ∈ ℝ ) |
| 5 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 6 | 5 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 7 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 8 | 7 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 9 | eluz | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) | |
| 10 | 6 8 9 | syl2an | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
| 11 | 10 | biimprd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑗 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 12 | 11 | expimpd | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 13 | 12 | imim1d | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝜑 ) → ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) ) ) |
| 14 | 13 | exp4a | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝜑 ) → ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) ) |
| 15 | 14 | ralimdv2 | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 17 | 4 16 | jca | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 18 | 17 | reximi2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 19 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑀 ∈ ℤ ) | |
| 20 | flcl | ⊢ ( 𝑗 ∈ ℝ → ( ⌊ ‘ 𝑗 ) ∈ ℤ ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ⌊ ‘ 𝑗 ) ∈ ℤ ) |
| 22 | 21 | peano2zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℤ ) |
| 23 | 22 19 | ifcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 24 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 25 | reflcl | ⊢ ( 𝑗 ∈ ℝ → ( ⌊ ‘ 𝑗 ) ∈ ℝ ) | |
| 26 | peano2re | ⊢ ( ( ⌊ ‘ 𝑗 ) ∈ ℝ → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑗 ∈ ℝ → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) |
| 28 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) | |
| 29 | 24 27 28 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 30 | eluz2 | ⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) | |
| 31 | 19 23 29 30 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 | 31 1 | eleqtrrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 33 | impexp | ⊢ ( ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) ↔ ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) | |
| 34 | uzss | ⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 35 | 31 34 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 | 35 1 | sseqtrrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ 𝑍 ) |
| 37 | 36 | sselda | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 38 | simplr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ∈ ℝ ) | |
| 39 | 23 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 40 | 39 | zred | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 41 | eluzelre | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝑘 ∈ ℝ ) | |
| 42 | 41 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ ℝ ) |
| 43 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ∈ ℝ ) | |
| 44 | 27 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) |
| 45 | 23 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 46 | fllep1 | ⊢ ( 𝑗 ∈ ℝ → 𝑗 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) ) |
| 48 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) | |
| 49 | 24 27 48 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 50 | 43 44 45 47 49 | letrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 52 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) | |
| 53 | 52 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) |
| 54 | 38 40 42 51 53 | letrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ≤ 𝑘 ) |
| 55 | 37 54 | jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) ) ) |
| 57 | 56 | imim1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝜑 ) ) ) |
| 58 | 33 57 | biimtrrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝜑 ) ) ) |
| 59 | 58 | ralimdv2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) ) |
| 60 | fveq2 | ⊢ ( 𝑚 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) | |
| 61 | 60 | raleqdv | ⊢ ( 𝑚 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) ) |
| 62 | 61 | rspcev | ⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) |
| 63 | 32 59 62 | syl6an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) |
| 64 | 63 | rexlimdva | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) |
| 65 | fveq2 | ⊢ ( 𝑚 = 𝑗 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑗 ) ) | |
| 66 | 65 | raleqdv | ⊢ ( 𝑚 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 67 | 66 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 68 | 64 67 | imbitrdi | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 69 | 18 68 | impbid2 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |