This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rex2dom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ||
| 2 | prssi | ||
| 3 | df2o3 | ||
| 4 | 0ex | ||
| 5 | 4 | a1i | |
| 6 | 1oex | ||
| 7 | 6 | a1i | |
| 8 | vex | ||
| 9 | 8 | a1i | |
| 10 | vex | ||
| 11 | 10 | a1i | |
| 12 | 1n0 | ||
| 13 | 12 | necomi | |
| 14 | 13 | a1i | |
| 15 | id | ||
| 16 | 5 7 9 11 14 15 | en2prd | |
| 17 | 3 16 | eqbrtrid | |
| 18 | endom | ||
| 19 | 17 18 | syl | |
| 20 | domssr | ||
| 21 | 20 | 3expib | |
| 22 | 2 19 21 | syl2ani | |
| 23 | 22 | expd | |
| 24 | 23 | rexlimdvv | |
| 25 | 1 24 | syl | |
| 26 | 25 | imp |