This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression C ( y ) . See reusv1 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reusv3.1 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| reusv3.2 | ⊢ ( 𝑦 = 𝑧 → 𝐶 = 𝐷 ) | ||
| Assertion | reusv3 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reusv3.2 | ⊢ ( 𝑦 = 𝑧 → 𝐶 = 𝐷 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( 𝐶 ∈ 𝐴 ↔ 𝐷 ∈ 𝐴 ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ↔ ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) ) ) |
| 5 | 4 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) ) |
| 6 | nfra2w | ⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) | |
| 7 | nfv | ⊢ Ⅎ 𝑧 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) | |
| 8 | 6 7 | nfim | ⊢ Ⅎ 𝑧 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
| 9 | risset | ⊢ ( 𝐷 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 ) | |
| 10 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) | |
| 11 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜑 → ( 𝜓 → 𝐶 = 𝐷 ) ) ) | |
| 12 | bi2.04 | ⊢ ( ( 𝜑 → ( 𝜓 → 𝐶 = 𝐷 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 15 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ↔ ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 18 | 10 17 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 19 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) → ( 𝑧 ∈ 𝐵 → ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) | |
| 20 | 18 19 | sylbi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ( 𝑧 ∈ 𝐵 → ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) |
| 21 | 20 | com3l | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝜓 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) |
| 22 | 21 | imp31 | ⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) |
| 23 | eqeq1 | ⊢ ( 𝑥 = 𝐷 → ( 𝑥 = 𝐶 ↔ 𝐷 = 𝐶 ) ) | |
| 24 | eqcom | ⊢ ( 𝐷 = 𝐶 ↔ 𝐶 = 𝐷 ) | |
| 25 | 23 24 | bitrdi | ⊢ ( 𝑥 = 𝐷 → ( 𝑥 = 𝐶 ↔ 𝐶 = 𝐷 ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = 𝐷 → ( ( 𝜑 → 𝑥 = 𝐶 ) ↔ ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑥 = 𝐷 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
| 28 | 22 27 | syl5ibrcom | ⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ( 𝑥 = 𝐷 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 29 | 28 | reximdv | ⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
| 32 | 9 31 | biimtrid | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( 𝐷 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
| 33 | 32 | expimpd | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
| 34 | 8 33 | rexlimi | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 35 | 5 34 | sylbi | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 36 | 1 2 | reusv3i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) |
| 37 | 35 36 | impbid1 | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |