This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression C ( y ) . (Contributed by NM, 16-Dec-2012) (Proof shortened by Mario Carneiro, 18-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusv1 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) | |
| 2 | 1 | nfmov | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) |
| 3 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝑥 = 𝐶 ) ) ) | |
| 4 | 3 | com3l | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) ) ) |
| 5 | 4 | alrimdv | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) ) ) |
| 6 | mo2icl | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) | |
| 7 | 5 6 | syl6 | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 8 | 2 7 | rexlimi | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
| 9 | mormo | ⊢ ( ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) | |
| 10 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ∧ ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) | |
| 11 | 10 | rbaib | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 12 | 8 9 11 | 3syl | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |