This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusq0 | ⊢ ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1 | ⊢ ( 𝑋 = 0 → ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) ) | |
| 2 | sqrtcl | ⊢ ( 𝑋 ∈ ℂ → ( √ ‘ 𝑋 ) ∈ ℂ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( √ ‘ 𝑋 ) ∈ ℂ ) |
| 4 | 2 | negcld | ⊢ ( 𝑋 ∈ ℂ → - ( √ ‘ 𝑋 ) ∈ ℂ ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → - ( √ ‘ 𝑋 ) ∈ ℂ ) |
| 6 | 2 | eqnegd | ⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = - ( √ ‘ 𝑋 ) ↔ ( √ ‘ 𝑋 ) = 0 ) ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → 𝑋 ∈ ℂ ) | |
| 8 | simpr | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → ( √ ‘ 𝑋 ) = 0 ) | |
| 9 | 7 8 | sqr00d | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → 𝑋 = 0 ) |
| 10 | 9 | ex | ⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = 0 → 𝑋 = 0 ) ) |
| 11 | 6 10 | sylbid | ⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = - ( √ ‘ 𝑋 ) → 𝑋 = 0 ) ) |
| 12 | 11 | necon3bd | ⊢ ( 𝑋 ∈ ℂ → ( ¬ 𝑋 = 0 → ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) |
| 14 | 3 5 13 | 3jca | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ( √ ‘ 𝑋 ) ∈ ℂ ∧ - ( √ ‘ 𝑋 ) ∈ ℂ ∧ ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) ) |
| 15 | sqrtth | ⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) | |
| 16 | sqneg | ⊢ ( ( √ ‘ 𝑋 ) ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) | |
| 17 | 2 16 | syl | ⊢ ( 𝑋 ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) |
| 18 | 17 15 | eqtrd | ⊢ ( 𝑋 ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) |
| 19 | 15 18 | jca | ⊢ ( 𝑋 ∈ ℂ → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = ( √ ‘ 𝑋 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑥 = ( √ ‘ 𝑋 ) → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
| 23 | oveq1 | ⊢ ( 𝑥 = - ( √ ‘ 𝑋 ) → ( 𝑥 ↑ 2 ) = ( - ( √ ‘ 𝑋 ) ↑ 2 ) ) | |
| 24 | 23 | eqeq1d | ⊢ ( 𝑥 = - ( √ ‘ 𝑋 ) → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
| 25 | 22 24 | 2nreu | ⊢ ( ( ( √ ‘ 𝑋 ) ∈ ℂ ∧ - ( √ ‘ 𝑋 ) ∈ ℂ ∧ ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) → ( ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) → ¬ ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) ) |
| 26 | 14 20 25 | sylc | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ¬ ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) |
| 27 | 26 | pm2.21d | ⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) |
| 28 | 27 | expcom | ⊢ ( ¬ 𝑋 = 0 → ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) ) |
| 29 | 1 28 | pm2.61i | ⊢ ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) |
| 30 | 2nn | ⊢ 2 ∈ ℕ | |
| 31 | 0cnd | ⊢ ( 2 ∈ ℕ → 0 ∈ ℂ ) | |
| 32 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = ( 0 ↑ 2 ) ) | |
| 33 | 32 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 0 ↔ ( 0 ↑ 2 ) = 0 ) ) |
| 34 | eqeq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 = 𝑦 ↔ 0 = 𝑦 ) ) | |
| 35 | 34 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
| 37 | 33 36 | anbi12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ↔ ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑥 = 0 ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ↔ ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) ) |
| 39 | 0exp | ⊢ ( 2 ∈ ℕ → ( 0 ↑ 2 ) = 0 ) | |
| 40 | sqeq0 | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 ↔ 𝑦 = 0 ) ) | |
| 41 | 40 | biimpd | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 → 𝑦 = 0 ) ) |
| 42 | eqcom | ⊢ ( 0 = 𝑦 ↔ 𝑦 = 0 ) | |
| 43 | 41 42 | imbitrrdi | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
| 44 | 43 | adantl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
| 45 | 44 | ralrimiva | ⊢ ( 2 ∈ ℕ → ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
| 46 | 39 45 | jca | ⊢ ( 2 ∈ ℕ → ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
| 47 | 31 38 46 | rspcedvd | ⊢ ( 2 ∈ ℕ → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
| 48 | 30 47 | mp1i | ⊢ ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
| 49 | eqeq2 | ⊢ ( 𝑋 = 0 → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( 𝑥 ↑ 2 ) = 0 ) ) | |
| 50 | eqeq2 | ⊢ ( 𝑋 = 0 → ( ( 𝑦 ↑ 2 ) = 𝑋 ↔ ( 𝑦 ↑ 2 ) = 0 ) ) | |
| 51 | 50 | imbi1d | ⊢ ( 𝑋 = 0 → ( ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
| 52 | 51 | ralbidv | ⊢ ( 𝑋 = 0 → ( ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
| 53 | 49 52 | anbi12d | ⊢ ( 𝑋 = 0 → ( ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) ) |
| 54 | 53 | rexbidv | ⊢ ( 𝑋 = 0 → ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) ) |
| 55 | 48 54 | mpbird | ⊢ ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) |
| 56 | 55 | a1i | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) ) |
| 57 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) | |
| 58 | 57 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( 𝑦 ↑ 2 ) = 𝑋 ) ) |
| 59 | 58 | reu8 | ⊢ ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) |
| 60 | 56 59 | imbitrrdi | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 = 0 → ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) ) |
| 61 | 29 60 | impbid | ⊢ ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ↔ 𝑋 = 0 ) ) |