This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusq0 | |- ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X <-> X = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1 | |- ( X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) |
|
| 2 | sqrtcl | |- ( X e. CC -> ( sqrt ` X ) e. CC ) |
|
| 3 | 2 | adantr | |- ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) e. CC ) |
| 4 | 2 | negcld | |- ( X e. CC -> -u ( sqrt ` X ) e. CC ) |
| 5 | 4 | adantr | |- ( ( X e. CC /\ -. X = 0 ) -> -u ( sqrt ` X ) e. CC ) |
| 6 | 2 | eqnegd | |- ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) <-> ( sqrt ` X ) = 0 ) ) |
| 7 | simpl | |- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X e. CC ) |
|
| 8 | simpr | |- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> ( sqrt ` X ) = 0 ) |
|
| 9 | 7 8 | sqr00d | |- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X = 0 ) |
| 10 | 9 | ex | |- ( X e. CC -> ( ( sqrt ` X ) = 0 -> X = 0 ) ) |
| 11 | 6 10 | sylbid | |- ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) -> X = 0 ) ) |
| 12 | 11 | necon3bd | |- ( X e. CC -> ( -. X = 0 -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) |
| 13 | 12 | imp | |- ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) |
| 14 | 3 5 13 | 3jca | |- ( ( X e. CC /\ -. X = 0 ) -> ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) |
| 15 | sqrtth | |- ( X e. CC -> ( ( sqrt ` X ) ^ 2 ) = X ) |
|
| 16 | sqneg | |- ( ( sqrt ` X ) e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
|
| 17 | 2 16 | syl | |- ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
| 18 | 17 15 | eqtrd | |- ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = X ) |
| 19 | 15 18 | jca | |- ( X e. CC -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 20 | 19 | adantr | |- ( ( X e. CC /\ -. X = 0 ) -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 21 | oveq1 | |- ( x = ( sqrt ` X ) -> ( x ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
|
| 22 | 21 | eqeq1d | |- ( x = ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( ( sqrt ` X ) ^ 2 ) = X ) ) |
| 23 | oveq1 | |- ( x = -u ( sqrt ` X ) -> ( x ^ 2 ) = ( -u ( sqrt ` X ) ^ 2 ) ) |
|
| 24 | 23 | eqeq1d | |- ( x = -u ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 25 | 22 24 | 2nreu | |- ( ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) -> ( ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) -> -. E! x e. CC ( x ^ 2 ) = X ) ) |
| 26 | 14 20 25 | sylc | |- ( ( X e. CC /\ -. X = 0 ) -> -. E! x e. CC ( x ^ 2 ) = X ) |
| 27 | 26 | pm2.21d | |- ( ( X e. CC /\ -. X = 0 ) -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) |
| 28 | 27 | expcom | |- ( -. X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) |
| 29 | 1 28 | pm2.61i | |- ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) |
| 30 | 2nn | |- 2 e. NN |
|
| 31 | 0cnd | |- ( 2 e. NN -> 0 e. CC ) |
|
| 32 | oveq1 | |- ( x = 0 -> ( x ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 33 | 32 | eqeq1d | |- ( x = 0 -> ( ( x ^ 2 ) = 0 <-> ( 0 ^ 2 ) = 0 ) ) |
| 34 | eqeq1 | |- ( x = 0 -> ( x = y <-> 0 = y ) ) |
|
| 35 | 34 | imbi2d | |- ( x = 0 -> ( ( ( y ^ 2 ) = 0 -> x = y ) <-> ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 36 | 35 | ralbidv | |- ( x = 0 -> ( A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 37 | 33 36 | anbi12d | |- ( x = 0 -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) |
| 38 | 37 | adantl | |- ( ( 2 e. NN /\ x = 0 ) -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) |
| 39 | 0exp | |- ( 2 e. NN -> ( 0 ^ 2 ) = 0 ) |
|
| 40 | sqeq0 | |- ( y e. CC -> ( ( y ^ 2 ) = 0 <-> y = 0 ) ) |
|
| 41 | 40 | biimpd | |- ( y e. CC -> ( ( y ^ 2 ) = 0 -> y = 0 ) ) |
| 42 | eqcom | |- ( 0 = y <-> y = 0 ) |
|
| 43 | 41 42 | imbitrrdi | |- ( y e. CC -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 44 | 43 | adantl | |- ( ( 2 e. NN /\ y e. CC ) -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 45 | 44 | ralrimiva | |- ( 2 e. NN -> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 46 | 39 45 | jca | |- ( 2 e. NN -> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 47 | 31 38 46 | rspcedvd | |- ( 2 e. NN -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 48 | 30 47 | mp1i | |- ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 49 | eqeq2 | |- ( X = 0 -> ( ( x ^ 2 ) = X <-> ( x ^ 2 ) = 0 ) ) |
|
| 50 | eqeq2 | |- ( X = 0 -> ( ( y ^ 2 ) = X <-> ( y ^ 2 ) = 0 ) ) |
|
| 51 | 50 | imbi1d | |- ( X = 0 -> ( ( ( y ^ 2 ) = X -> x = y ) <-> ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 52 | 51 | ralbidv | |- ( X = 0 -> ( A. y e. CC ( ( y ^ 2 ) = X -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 53 | 49 52 | anbi12d | |- ( X = 0 -> ( ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) |
| 54 | 53 | rexbidv | |- ( X = 0 -> ( E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) |
| 55 | 48 54 | mpbird | |- ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) |
| 56 | 55 | a1i | |- ( X e. CC -> ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) ) |
| 57 | oveq1 | |- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
|
| 58 | 57 | eqeq1d | |- ( x = y -> ( ( x ^ 2 ) = X <-> ( y ^ 2 ) = X ) ) |
| 59 | 58 | reu8 | |- ( E! x e. CC ( x ^ 2 ) = X <-> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) |
| 60 | 56 59 | imbitrrdi | |- ( X e. CC -> ( X = 0 -> E! x e. CC ( x ^ 2 ) = X ) ) |
| 61 | 29 60 | impbid | |- ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X <-> X = 0 ) ) |