This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexsngf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| rexsngf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ralsngf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexsngf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | rexsngf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ralsnsg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | 1 2 | sbciegf | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |