This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness using implicit substitution. This version of reu8 uses a nonfreeness hypothesis for x and ps instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reu8nf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| reu8nf.2 | ⊢ Ⅎ 𝑥 𝜒 | ||
| reu8nf.3 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | ||
| reu8nf.4 | ⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) | ||
| Assertion | reu8nf | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu8nf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | reu8nf.2 | ⊢ Ⅎ 𝑥 𝜒 | |
| 3 | reu8nf.3 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | |
| 4 | reu8nf.4 | ⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) | |
| 5 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 6 | 5 2 3 | cbvreuw | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑤 ∈ 𝐴 𝜒 ) |
| 7 | 4 | reu8 | ⊢ ( ∃! 𝑤 ∈ 𝐴 𝜒 ↔ ∃ 𝑤 ∈ 𝐴 ( 𝜒 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) ) ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝑤 = 𝑦 | |
| 10 | 1 9 | nfim | ⊢ Ⅎ 𝑥 ( 𝜓 → 𝑤 = 𝑦 ) |
| 11 | 8 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) |
| 12 | 2 11 | nfan | ⊢ Ⅎ 𝑥 ( 𝜒 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) ) |
| 13 | nfv | ⊢ Ⅎ 𝑤 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) | |
| 14 | 3 | bicomd | ⊢ ( 𝑥 = 𝑤 → ( 𝜒 ↔ 𝜑 ) ) |
| 15 | 14 | equcoms | ⊢ ( 𝑤 = 𝑥 → ( 𝜒 ↔ 𝜑 ) ) |
| 16 | equequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 17 | 16 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜓 → 𝑤 = 𝑦 ) ↔ ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜒 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) ) |
| 20 | 12 13 19 | cbvrexw | ⊢ ( ∃ 𝑤 ∈ 𝐴 ( 𝜒 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑤 = 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 21 | 6 7 20 | 3bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |