This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness using implicit substitution. This version of reu8 uses a nonfreeness hypothesis for x and ps instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reu8nf.1 | |- F/ x ps |
|
| reu8nf.2 | |- F/ x ch |
||
| reu8nf.3 | |- ( x = w -> ( ph <-> ch ) ) |
||
| reu8nf.4 | |- ( w = y -> ( ch <-> ps ) ) |
||
| Assertion | reu8nf | |- ( E! x e. A ph <-> E. x e. A ( ph /\ A. y e. A ( ps -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu8nf.1 | |- F/ x ps |
|
| 2 | reu8nf.2 | |- F/ x ch |
|
| 3 | reu8nf.3 | |- ( x = w -> ( ph <-> ch ) ) |
|
| 4 | reu8nf.4 | |- ( w = y -> ( ch <-> ps ) ) |
|
| 5 | nfv | |- F/ w ph |
|
| 6 | 5 2 3 | cbvreuw | |- ( E! x e. A ph <-> E! w e. A ch ) |
| 7 | 4 | reu8 | |- ( E! w e. A ch <-> E. w e. A ( ch /\ A. y e. A ( ps -> w = y ) ) ) |
| 8 | nfcv | |- F/_ x A |
|
| 9 | nfv | |- F/ x w = y |
|
| 10 | 1 9 | nfim | |- F/ x ( ps -> w = y ) |
| 11 | 8 10 | nfralw | |- F/ x A. y e. A ( ps -> w = y ) |
| 12 | 2 11 | nfan | |- F/ x ( ch /\ A. y e. A ( ps -> w = y ) ) |
| 13 | nfv | |- F/ w ( ph /\ A. y e. A ( ps -> x = y ) ) |
|
| 14 | 3 | bicomd | |- ( x = w -> ( ch <-> ph ) ) |
| 15 | 14 | equcoms | |- ( w = x -> ( ch <-> ph ) ) |
| 16 | equequ1 | |- ( w = x -> ( w = y <-> x = y ) ) |
|
| 17 | 16 | imbi2d | |- ( w = x -> ( ( ps -> w = y ) <-> ( ps -> x = y ) ) ) |
| 18 | 17 | ralbidv | |- ( w = x -> ( A. y e. A ( ps -> w = y ) <-> A. y e. A ( ps -> x = y ) ) ) |
| 19 | 15 18 | anbi12d | |- ( w = x -> ( ( ch /\ A. y e. A ( ps -> w = y ) ) <-> ( ph /\ A. y e. A ( ps -> x = y ) ) ) ) |
| 20 | 12 13 19 | cbvrexw | |- ( E. w e. A ( ch /\ A. y e. A ( ps -> w = y ) ) <-> E. x e. A ( ph /\ A. y e. A ( ps -> x = y ) ) ) |
| 21 | 6 7 20 | 3bitri | |- ( E! x e. A ph <-> E. x e. A ( ph /\ A. y e. A ( ps -> x = y ) ) ) |