This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | reu7 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | reu3 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ) ) | |
| 3 | equequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) | |
| 4 | equcom | ⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) | |
| 5 | 3 4 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑦 ) ) |
| 6 | 1 5 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( 𝜓 → 𝑧 = 𝑦 ) ) ) |
| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ) |
| 9 | equequ1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 10 | 9 | imbi2d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝜓 → 𝑧 = 𝑦 ) ↔ ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 12 | 11 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑧 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 13 | 8 12 | bitri | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 15 | 2 14 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |