This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | reu7 | |- ( E! x e. A ph <-> ( E. x e. A ph /\ E. x e. A A. y e. A ( ps -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | reu3 | |- ( E! x e. A ph <-> ( E. x e. A ph /\ E. z e. A A. x e. A ( ph -> x = z ) ) ) |
|
| 3 | equequ1 | |- ( x = y -> ( x = z <-> y = z ) ) |
|
| 4 | equcom | |- ( y = z <-> z = y ) |
|
| 5 | 3 4 | bitrdi | |- ( x = y -> ( x = z <-> z = y ) ) |
| 6 | 1 5 | imbi12d | |- ( x = y -> ( ( ph -> x = z ) <-> ( ps -> z = y ) ) ) |
| 7 | 6 | cbvralvw | |- ( A. x e. A ( ph -> x = z ) <-> A. y e. A ( ps -> z = y ) ) |
| 8 | 7 | rexbii | |- ( E. z e. A A. x e. A ( ph -> x = z ) <-> E. z e. A A. y e. A ( ps -> z = y ) ) |
| 9 | equequ1 | |- ( z = x -> ( z = y <-> x = y ) ) |
|
| 10 | 9 | imbi2d | |- ( z = x -> ( ( ps -> z = y ) <-> ( ps -> x = y ) ) ) |
| 11 | 10 | ralbidv | |- ( z = x -> ( A. y e. A ( ps -> z = y ) <-> A. y e. A ( ps -> x = y ) ) ) |
| 12 | 11 | cbvrexvw | |- ( E. z e. A A. y e. A ( ps -> z = y ) <-> E. x e. A A. y e. A ( ps -> x = y ) ) |
| 13 | 8 12 | bitri | |- ( E. z e. A A. x e. A ( ph -> x = z ) <-> E. x e. A A. y e. A ( ps -> x = y ) ) |
| 14 | 13 | anbi2i | |- ( ( E. x e. A ph /\ E. z e. A A. x e. A ( ph -> x = z ) ) <-> ( E. x e. A ph /\ E. x e. A A. y e. A ( ps -> x = y ) ) ) |
| 15 | 2 14 | bitri | |- ( E! x e. A ph <-> ( E. x e. A ph /\ E. x e. A A. y e. A ( ps -> x = y ) ) ) |