This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| resv1r.2 | ⊢ 1 = ( 1r ‘ 𝐺 ) | ||
| Assertion | resv1r | ⊢ ( 𝐴 ∈ 𝑉 → 1 = ( 1r ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| 2 | resv1r.2 | ⊢ 1 = ( 1r ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 1 3 | resvbas | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 5 | 4 | eleq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑒 ∈ ( Base ‘ 𝐺 ) ↔ 𝑒 ∈ ( Base ‘ 𝐻 ) ) ) |
| 6 | eqid | ⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) | |
| 7 | 1 6 | resvmulr | ⊢ ( 𝐴 ∈ 𝑉 → ( .r ‘ 𝐺 ) = ( .r ‘ 𝐻 ) ) |
| 8 | 7 | oveqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ↔ ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ) ) |
| 10 | 7 | oveqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ↔ ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
| 13 | 4 12 | raleqbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
| 14 | 5 13 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 15 | 14 | iotabidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) ) |
| 16 | 3 6 2 | dfur2 | ⊢ 1 = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( .r ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 18 | eqid | ⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) | |
| 20 | 17 18 19 | dfur2 | ⊢ ( 1r ‘ 𝐻 ) = ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ( ( 𝑒 ( .r ‘ 𝐻 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐻 ) 𝑒 ) = 𝑥 ) ) ) |
| 21 | 15 16 20 | 3eqtr4g | ⊢ ( 𝐴 ∈ 𝑉 → 1 = ( 1r ‘ 𝐻 ) ) |