This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | |- H = ( G |`v A ) |
|
| resv1r.2 | |- .1. = ( 1r ` G ) |
||
| Assertion | resv1r | |- ( A e. V -> .1. = ( 1r ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | |- H = ( G |`v A ) |
|
| 2 | resv1r.2 | |- .1. = ( 1r ` G ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 1 3 | resvbas | |- ( A e. V -> ( Base ` G ) = ( Base ` H ) ) |
| 5 | 4 | eleq2d | |- ( A e. V -> ( e e. ( Base ` G ) <-> e e. ( Base ` H ) ) ) |
| 6 | eqid | |- ( .r ` G ) = ( .r ` G ) |
|
| 7 | 1 6 | resvmulr | |- ( A e. V -> ( .r ` G ) = ( .r ` H ) ) |
| 8 | 7 | oveqd | |- ( A e. V -> ( e ( .r ` G ) x ) = ( e ( .r ` H ) x ) ) |
| 9 | 8 | eqeq1d | |- ( A e. V -> ( ( e ( .r ` G ) x ) = x <-> ( e ( .r ` H ) x ) = x ) ) |
| 10 | 7 | oveqd | |- ( A e. V -> ( x ( .r ` G ) e ) = ( x ( .r ` H ) e ) ) |
| 11 | 10 | eqeq1d | |- ( A e. V -> ( ( x ( .r ` G ) e ) = x <-> ( x ( .r ` H ) e ) = x ) ) |
| 12 | 9 11 | anbi12d | |- ( A e. V -> ( ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) <-> ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 13 | 4 12 | raleqbidv | |- ( A e. V -> ( A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) <-> A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 14 | 5 13 | anbi12d | |- ( A e. V -> ( ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) <-> ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) ) |
| 15 | 14 | iotabidv | |- ( A e. V -> ( iota e ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) ) = ( iota e ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) ) |
| 16 | 3 6 2 | dfur2 | |- .1. = ( iota e ( e e. ( Base ` G ) /\ A. x e. ( Base ` G ) ( ( e ( .r ` G ) x ) = x /\ ( x ( .r ` G ) e ) = x ) ) ) |
| 17 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 18 | eqid | |- ( .r ` H ) = ( .r ` H ) |
|
| 19 | eqid | |- ( 1r ` H ) = ( 1r ` H ) |
|
| 20 | 17 18 19 | dfur2 | |- ( 1r ` H ) = ( iota e ( e e. ( Base ` H ) /\ A. x e. ( Base ` H ) ( ( e ( .r ` H ) x ) = x /\ ( x ( .r ` H ) e ) = x ) ) ) |
| 21 | 15 16 20 | 3eqtr4g | |- ( A e. V -> .1. = ( 1r ` H ) ) |