This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| resvmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | ||
| Assertion | resvmulr | ⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| 2 | resvmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | |
| 3 | mulridx | ⊢ .r = Slot ( .r ‘ ndx ) | |
| 4 | scandxnmulrndx | ⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
| 6 | 1 2 3 5 | resvlem | ⊢ ( 𝐴 ∈ 𝑉 → · = ( .r ‘ 𝐻 ) ) |