This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace topology is a topology. Definition of subspace topology in Munkres p. 89. A is normally a subset of the base set of J . (Contributed by FL, 15-Apr-2007) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttop |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrest | ||
| 2 | tgtop | ||
| 3 | 2 | adantr | |
| 4 | 3 | oveq1d | |
| 5 | 1 4 | eqtrd | |
| 6 | topbas | ||
| 7 | 6 | adantr | |
| 8 | restbas | ||
| 9 | tgcl | ||
| 10 | 7 8 9 | 3syl | |
| 11 | 5 10 | eqeltrrd |