This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function restricted to a class A is empty iff the class A is empty. (Contributed by AV, 30-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iresn0n0 | ⊢ ( 𝐴 = ∅ ↔ ( I ↾ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opab0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) | |
| 2 | opabresid | ⊢ ( I ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } | |
| 3 | 2 | eqeq1i | ⊢ ( ( I ↾ 𝐴 ) = ∅ ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ∅ ) |
| 4 | nel02 | ⊢ ( 𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴 ) | |
| 5 | 4 | intnanrd | ⊢ ( 𝐴 = ∅ → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
| 6 | 5 | alrimivv | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
| 7 | ianor | ⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ) | |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ) |
| 9 | 19.32v | ⊢ ( ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∨ ∀ 𝑦 ¬ 𝑦 = 𝑥 ) ) | |
| 10 | id | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴 ) | |
| 11 | ax6v | ⊢ ¬ ∀ 𝑦 ¬ 𝑦 = 𝑥 | |
| 12 | 11 | pm2.21i | ⊢ ( ∀ 𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴 ) |
| 13 | 10 12 | jaoi | ⊢ ( ( ¬ 𝑥 ∈ 𝐴 ∨ ∀ 𝑦 ¬ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 14 | 9 13 | sylbi | ⊢ ( ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 15 | 8 14 | sylbi | ⊢ ( ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 16 | 15 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 17 | eq0 | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) | |
| 18 | 16 17 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → 𝐴 = ∅ ) |
| 19 | 6 18 | impbii | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
| 20 | 1 3 19 | 3bitr4ri | ⊢ ( 𝐴 = ∅ ↔ ( I ↾ 𝐴 ) = ∅ ) |