This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restid2 | |- ( ( A e. V /\ J C_ ~P A ) -> ( J |`t A ) = J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ J C_ ~P A ) -> ~P A e. _V ) |
| 3 | simpr | |- ( ( A e. V /\ J C_ ~P A ) -> J C_ ~P A ) |
|
| 4 | 2 3 | ssexd | |- ( ( A e. V /\ J C_ ~P A ) -> J e. _V ) |
| 5 | simpl | |- ( ( A e. V /\ J C_ ~P A ) -> A e. V ) |
|
| 6 | restval | |- ( ( J e. _V /\ A e. V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( A e. V /\ J C_ ~P A ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 8 | 3 | sselda | |- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> x e. ~P A ) |
| 9 | 8 | elpwid | |- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> x C_ A ) |
| 10 | dfss2 | |- ( x C_ A <-> ( x i^i A ) = x ) |
|
| 11 | 9 10 | sylib | |- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> ( x i^i A ) = x ) |
| 12 | 11 | mpteq2dva | |- ( ( A e. V /\ J C_ ~P A ) -> ( x e. J |-> ( x i^i A ) ) = ( x e. J |-> x ) ) |
| 13 | mptresid | |- ( _I |` J ) = ( x e. J |-> x ) |
|
| 14 | 12 13 | eqtr4di | |- ( ( A e. V /\ J C_ ~P A ) -> ( x e. J |-> ( x i^i A ) ) = ( _I |` J ) ) |
| 15 | 14 | rneqd | |- ( ( A e. V /\ J C_ ~P A ) -> ran ( x e. J |-> ( x i^i A ) ) = ran ( _I |` J ) ) |
| 16 | rnresi | |- ran ( _I |` J ) = J |
|
| 17 | 15 16 | eqtrdi | |- ( ( A e. V /\ J C_ ~P A ) -> ran ( x e. J |-> ( x i^i A ) ) = J ) |
| 18 | 7 17 | eqtrd | |- ( ( A e. V /\ J C_ ~P A ) -> ( J |`t A ) = J ) |