This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restdis | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝒫 𝐴 ↾t 𝐵 ) = 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 2 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 3 | 2 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝒫 𝐴 ) |
| 4 | restopn2 | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) | |
| 5 | 1 3 4 | syl2an2r | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 6 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) | |
| 7 | sstr | ⊢ ( ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 8 | 7 | expcom | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴 ) ) |
| 10 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 12 | 11 | pm4.71rd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 13 | 6 12 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 14 | 5 13 | bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ↾t 𝐵 ) ↔ 𝑥 ∈ 𝒫 𝐵 ) ) |
| 15 | 14 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝒫 𝐴 ↾t 𝐵 ) = 𝒫 𝐵 ) |