This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restdis |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | ||
| 2 | elpw2g | ||
| 3 | 2 | biimpar | |
| 4 | restopn2 | ||
| 5 | 1 3 4 | syl2an2r | |
| 6 | velpw | ||
| 7 | sstr | ||
| 8 | 7 | expcom | |
| 9 | 8 | adantl | |
| 10 | velpw | ||
| 11 | 9 10 | imbitrrdi | |
| 12 | 11 | pm4.71rd | |
| 13 | 6 12 | bitrid | |
| 14 | 5 13 | bitr4d | |
| 15 | 14 | eqrdv |