This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restdis | |- ( ( A e. V /\ B C_ A ) -> ( ~P A |`t B ) = ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | |- ( A e. V -> ~P A e. Top ) |
|
| 2 | elpw2g | |- ( A e. V -> ( B e. ~P A <-> B C_ A ) ) |
|
| 3 | 2 | biimpar | |- ( ( A e. V /\ B C_ A ) -> B e. ~P A ) |
| 4 | restopn2 | |- ( ( ~P A e. Top /\ B e. ~P A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) |
|
| 5 | 1 3 4 | syl2an2r | |- ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) |
| 6 | velpw | |- ( x e. ~P B <-> x C_ B ) |
|
| 7 | sstr | |- ( ( x C_ B /\ B C_ A ) -> x C_ A ) |
|
| 8 | 7 | expcom | |- ( B C_ A -> ( x C_ B -> x C_ A ) ) |
| 9 | 8 | adantl | |- ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x C_ A ) ) |
| 10 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 11 | 9 10 | imbitrrdi | |- ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x e. ~P A ) ) |
| 12 | 11 | pm4.71rd | |- ( ( A e. V /\ B C_ A ) -> ( x C_ B <-> ( x e. ~P A /\ x C_ B ) ) ) |
| 13 | 6 12 | bitrid | |- ( ( A e. V /\ B C_ A ) -> ( x e. ~P B <-> ( x e. ~P A /\ x C_ B ) ) ) |
| 14 | 5 13 | bitr4d | |- ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> x e. ~P B ) ) |
| 15 | 14 | eqrdv | |- ( ( A e. V /\ B C_ A ) -> ( ~P A |`t B ) = ~P B ) |