This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only subspace topology induced by the topology { (/) } . (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsn | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } ↾t 𝐴 ) = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn0top | ⊢ { ∅ } ∈ Top | |
| 2 | elrest | ⊢ ( ( { ∅ } ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | ineq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) ) | |
| 6 | 0in | ⊢ ( ∅ ∩ 𝐴 ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝐴 ) = ∅ ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 = ∅ ) ) |
| 9 | 4 8 | rexsn | ⊢ ( ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 = ∅ ) |
| 10 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 11 | 9 10 | bitr4i | ⊢ ( ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 ∈ { ∅ } ) |
| 12 | 3 11 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ 𝑥 ∈ { ∅ } ) ) |
| 13 | 12 | eqrdv | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } ↾t 𝐴 ) = { ∅ } ) |