This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressuppssdif | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ↔ ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∧ ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ) | |
| 2 | sneq | ⊢ ( 𝑧 = 𝑥 → { 𝑧 } = { 𝑥 } ) | |
| 3 | 2 | imaeq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 “ { 𝑧 } ) = ( 𝐹 “ { 𝑥 } ) ) |
| 4 | 3 | neeq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } ↔ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 5 | 4 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 6 | ianor | ⊢ ( ¬ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ↔ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) | |
| 7 | 2 | imaeq2d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 8 | 7 | neeq1d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } ↔ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 9 | 8 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 10 | 6 9 | xchnxbir | ⊢ ( ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ↔ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 11 | ianor | ⊢ ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) ) | |
| 12 | dmres | ⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) | |
| 13 | 12 | elin2 | ⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 14 | 11 13 | xchnxbir | ⊢ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) ) |
| 15 | simpl | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ dom 𝐹 ) | |
| 16 | 15 | anim2i | ⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 17 | 16 | ancomd | ⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 18 | eldif | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 20 | 19 | ex | ⊢ ( ¬ 𝑥 ∈ 𝐵 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 21 | pm2.24 | ⊢ ( 𝑥 ∈ dom 𝐹 → ( ¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ¬ 𝑥 ∈ dom 𝐹 → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 23 | 22 | com12 | ⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 24 | 20 23 | jaoi | ⊢ ( ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 25 | 14 24 | sylbi | ⊢ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 26 | 15 | adantl | ⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ dom 𝐹 ) |
| 27 | snssi | ⊢ ( 𝑥 ∈ 𝐵 → { 𝑥 } ⊆ 𝐵 ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
| 29 | resima2 | ⊢ ( { 𝑥 } ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) ) |
| 31 | 30 | eqcomd | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ { 𝑥 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( 𝐹 “ { 𝑥 } ) = ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ) |
| 33 | simpr | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) | |
| 34 | 32 33 | eqtrd | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } ) → ( 𝐹 “ { 𝑥 } ) = { 𝑍 } ) |
| 35 | 34 | ex | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) = { 𝑍 } → ( 𝐹 “ { 𝑥 } ) = { 𝑍 } ) ) |
| 36 | 35 | necon3d | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 37 | 36 | impancom | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( 𝑥 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) |
| 38 | 37 | con3d | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } → ¬ 𝑥 ∈ 𝐵 ) ) |
| 39 | 38 | impcom | ⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 40 | 26 39 | eldifd | ⊢ ( ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ∧ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 41 | 40 | ex | ⊢ ( ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 42 | 25 41 | jaoi | ⊢ ( ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 43 | 42 | impcom | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 “ { 𝑥 } ) ≠ { 𝑍 } ) ∧ ( ¬ 𝑥 ∈ dom ( 𝐹 ↾ 𝐵 ) ∨ ¬ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑥 } ) ≠ { 𝑍 } ) ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 44 | 5 10 43 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∧ ¬ 𝑥 ∈ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 45 | 1 44 | sylbi | ⊢ ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) |
| 46 | 45 | a1i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) → 𝑥 ∈ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 47 | 46 | ssrdv | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ⊆ ( dom 𝐹 ∖ 𝐵 ) ) |
| 48 | ssundif | ⊢ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ⊆ ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ↔ ( { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ∖ { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) ⊆ ( dom 𝐹 ∖ 𝐵 ) ) | |
| 49 | 47 48 | sylibr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ⊆ ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 50 | suppval | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑧 ∈ dom 𝐹 ∣ ( 𝐹 “ { 𝑧 } ) ≠ { 𝑍 } } ) | |
| 51 | resexg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐵 ) ∈ V ) | |
| 52 | suppval | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) | |
| 53 | 51 52 | sylan | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) = { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ) |
| 54 | 53 | uneq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) = ( { 𝑧 ∈ dom ( 𝐹 ↾ 𝐵 ) ∣ ( ( 𝐹 ↾ 𝐵 ) “ { 𝑧 } ) ≠ { 𝑍 } } ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |
| 55 | 49 50 54 | 3sstr4d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( ( 𝐹 ↾ 𝐵 ) supp 𝑍 ) ∪ ( dom 𝐹 ∖ 𝐵 ) ) ) |