This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | ||
| prdsds.l | ⊢ 𝐷 = ( dist ‘ 𝑃 ) | ||
| Assertion | prdsdsfn | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | |
| 6 | prdsds.l | ⊢ 𝐷 = ( dist ‘ 𝑃 ) | |
| 7 | eqid | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 8 | xrltso | ⊢ < Or ℝ* | |
| 9 | 8 | supex | ⊢ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ V |
| 10 | 7 9 | fnmpoi | ⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) |
| 11 | 1 2 3 4 5 6 | prdsds | ⊢ ( 𝜑 → 𝐷 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 12 | 11 | fneq1d | ⊢ ( 𝜑 → ( 𝐷 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 13 | 10 12 | mpbiri | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |