This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | ||
| prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | prdsbas3 | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | |
| 6 | prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 8 | 7 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 10 | 1 2 3 4 9 | prdsbas2 | ⊢ ( 𝜑 → 𝐵 = X 𝑦 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ) |
| 11 | nfcv | ⊢ Ⅎ 𝑥 Base | |
| 12 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) | |
| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑥 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑦 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) | |
| 15 | 2fveq3 | ⊢ ( 𝑦 = 𝑥 → ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) = ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ) | |
| 16 | 13 14 15 | cbvixp | ⊢ X 𝑦 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) |
| 17 | 10 16 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ) |
| 18 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 20 | 19 6 | eqtr4di | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = 𝐾 ) |
| 21 | 20 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = 𝐾 ) |
| 22 | ixpeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = 𝐾 → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 𝐾 ) | |
| 23 | 5 21 22 | 3syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 𝐾 ) |
| 24 | 17 23 | eqtrd | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 𝐾 ) |