This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | ||
| prdsdsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsdsval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsdsval2.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | ||
| prdsdsval2.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| Assertion | prdsdsval2 | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | |
| 6 | prdsdsval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | prdsdsval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | prdsdsval2.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | |
| 9 | prdsdsval2.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 11 | 10 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 13 | 1 2 3 4 12 6 7 9 | prdsdsval | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 dist | |
| 16 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) | |
| 17 | 15 16 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) |
| 18 | nfcv | ⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑦 ) | |
| 19 | 14 17 18 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) |
| 20 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) | |
| 21 | 2fveq3 | ⊢ ( 𝑦 = 𝑥 → ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) = ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ) | |
| 22 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 23 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 24 | 21 22 23 | oveq123d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 25 | 19 20 24 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |
| 26 | eqidd | ⊢ ( 𝜑 → 𝐼 = 𝐼 ) | |
| 27 | 10 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = ( dist ‘ 𝑅 ) ) |
| 29 | 28 8 | eqtr4di | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = 𝐸 ) |
| 30 | 29 | oveqd | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) |
| 31 | 30 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) |
| 32 | 5 31 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) |
| 33 | mpteq12 | ⊢ ( ( 𝐼 = 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 34 | 26 32 33 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 35 | 25 34 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 36 | 35 | rneqd | ⊢ ( 𝜑 → ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) = ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 37 | 36 | uneq1d | ⊢ ( 𝜑 → ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) ∪ { 0 } ) = ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
| 38 | 37 | supeq1d | ⊢ ( 𝜑 → sup ( ( ran ( 𝑦 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) ) ∪ { 0 } ) , ℝ* , < ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 39 | 13 38 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |