This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resspos | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ V ) | |
| 2 | eqid | ⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 4 | 2 3 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 5 | inss2 | ⊢ ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) ⊆ ( Base ‘ 𝐹 ) | |
| 6 | 4 5 | eqsstrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 8 | eqid | ⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) | |
| 9 | 3 8 | ispos | ⊢ ( 𝐹 ∈ Poset ↔ ( 𝐹 ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
| 10 | 9 | simprbi | ⊢ ( 𝐹 ∈ Poset → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
| 12 | ssralv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) | |
| 13 | 12 | ralimdv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
| 14 | ssralv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) | |
| 15 | 13 14 | syld | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
| 16 | 15 | ralimdv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
| 17 | ssralv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) | |
| 18 | 16 17 | syld | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
| 19 | 7 11 18 | sylc | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
| 20 | 2 8 | ressle | ⊢ ( 𝐴 ∈ 𝑉 → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 22 | breq | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) | |
| 23 | breq | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ) ) | |
| 24 | breq | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑦 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 26 | 25 | imbi1d | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 27 | breq | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑦 ( le ‘ 𝐹 ) 𝑧 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) | |
| 28 | 23 27 | anbi12d | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
| 29 | breq | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑧 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ↔ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
| 31 | 22 26 30 | 3anbi123d | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
| 32 | 31 | ralbidv | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
| 33 | 32 | 2ralbidv | ⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
| 34 | 21 33 | syl | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
| 35 | 19 34 | mpbid | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
| 36 | eqid | ⊢ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) | |
| 37 | eqid | ⊢ ( le ‘ ( 𝐹 ↾s 𝐴 ) ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) | |
| 38 | 36 37 | ispos | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Poset ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
| 39 | 1 35 38 | sylanbrc | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |