This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a poset". (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ispos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ispos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | ispos | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ispos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 5 | 4 | eqeq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑏 = ( Base ‘ 𝑝 ) ↔ 𝑏 = 𝐵 ) ) |
| 6 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑟 = ( le ‘ 𝑝 ) ↔ 𝑟 = ≤ ) ) |
| 9 | 5 8 | 3anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
| 10 | 9 | 2exbidv | ⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑏 ∃ 𝑟 ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
| 11 | df-poset | ⊢ Poset = { 𝑝 ∣ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) } | |
| 12 | 10 11 | elab4g | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
| 13 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 14 | 2 | fvexi | ⊢ ≤ ∈ V |
| 15 | raleq | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) | |
| 16 | 15 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) |
| 17 | 16 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) |
| 18 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑥 ↔ 𝑥 ≤ 𝑥 ) ) | |
| 19 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 20 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 21 | 19 20 | anbi12d | ⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 22 | 21 | imbi1d | ⊢ ( 𝑟 = ≤ → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 23 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) | |
| 24 | 19 23 | anbi12d | ⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 25 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) | |
| 26 | 24 25 | imbi12d | ⊢ ( 𝑟 = ≤ → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
| 27 | 18 22 26 | 3anbi123d | ⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑟 = ≤ → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 29 | 28 | 2ralbidv | ⊢ ( 𝑟 = ≤ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 30 | 13 14 17 29 | ceqsex2v | ⊢ ( ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
| 31 | 30 | anbi2i | ⊢ ( ( 𝐾 ∈ V ∧ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 32 | 12 31 | bitri | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |