This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnviin | ⊢ ( 𝐴 ≠ ∅ → ◡ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ ∩ 𝑥 ∈ 𝐴 𝐵 | |
| 2 | relcnv | ⊢ Rel ◡ 𝐵 | |
| 3 | df-rel | ⊢ ( Rel ◡ 𝐵 ↔ ◡ 𝐵 ⊆ ( V × V ) ) | |
| 4 | 2 3 | mpbi | ⊢ ◡ 𝐵 ⊆ ( V × V ) |
| 5 | 4 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) |
| 6 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) → ∃ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) |
| 8 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) → ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) |
| 10 | df-rel | ⊢ ( Rel ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ⊆ ( V × V ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝐴 ≠ ∅ → Rel ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) |
| 12 | opex | ⊢ 〈 𝑏 , 𝑎 〉 ∈ V | |
| 13 | eliin | ⊢ ( 〈 𝑏 , 𝑎 〉 ∈ V → ( 〈 𝑏 , 𝑎 〉 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑏 , 𝑎 〉 ∈ 𝐵 ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 〈 𝑏 , 𝑎 〉 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑏 , 𝑎 〉 ∈ 𝐵 ) |
| 15 | vex | ⊢ 𝑎 ∈ V | |
| 16 | vex | ⊢ 𝑏 ∈ V | |
| 17 | 15 16 | opelcnv | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ◡ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 〈 𝑏 , 𝑎 〉 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 18 | opex | ⊢ 〈 𝑎 , 𝑏 〉 ∈ V | |
| 19 | eliin | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ V → ( 〈 𝑎 , 𝑏 〉 ∈ ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑎 , 𝑏 〉 ∈ ◡ 𝐵 ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑎 , 𝑏 〉 ∈ ◡ 𝐵 ) |
| 21 | 15 16 | opelcnv | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ◡ 𝐵 ↔ 〈 𝑏 , 𝑎 〉 ∈ 𝐵 ) |
| 22 | 21 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 𝑎 , 𝑏 〉 ∈ ◡ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑏 , 𝑎 〉 ∈ 𝐵 ) |
| 23 | 20 22 | bitri | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑏 , 𝑎 〉 ∈ 𝐵 ) |
| 24 | 14 17 23 | 3bitr4i | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ◡ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 〈 𝑎 , 𝑏 〉 ∈ ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) |
| 25 | 24 | eqrelriv | ⊢ ( ( Rel ◡ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ Rel ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) → ◡ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) |
| 26 | 1 11 25 | sylancr | ⊢ ( 𝐴 ≠ ∅ → ◡ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡ 𝐵 ) |