This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnn.1 | |- H = ( G |`s A ) |
|
| ressmulgnn.2 | |- A C_ ( Base ` G ) |
||
| ressmulgnn.3 | |- .* = ( .g ` G ) |
||
| ressmulgnn.4 | |- I = ( invg ` G ) |
||
| Assertion | ressmulgnn | |- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn.1 | |- H = ( G |`s A ) |
|
| 2 | ressmulgnn.2 | |- A C_ ( Base ` G ) |
|
| 3 | ressmulgnn.3 | |- .* = ( .g ` G ) |
|
| 4 | ressmulgnn.4 | |- I = ( invg ` G ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 1 5 | ressbas2 | |- ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) |
| 7 | 2 6 | ax-mp | |- A = ( Base ` H ) |
| 8 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 9 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 10 | fvex | |- ( Base ` G ) e. _V |
|
| 11 | 10 2 | ssexi | |- A e. _V |
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | 1 12 | ressplusg | |- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
| 14 | 11 13 | ax-mp | |- ( +g ` G ) = ( +g ` H ) |
| 15 | seqeq2 | |- ( ( +g ` G ) = ( +g ` H ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
|
| 16 | 14 15 | ax-mp | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
| 17 | 7 8 9 16 | mulgnn | |- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 18 | simpr | |- ( ( N e. NN /\ X e. A ) -> X e. A ) |
|
| 19 | 2 18 | sselid | |- ( ( N e. NN /\ X e. A ) -> X e. ( Base ` G ) ) |
| 20 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 21 | 5 12 3 20 | mulgnn | |- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 22 | 19 21 | syldan | |- ( ( N e. NN /\ X e. A ) -> ( N .* X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 23 | 17 22 | eqtr4d | |- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |