This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| Assertion | ressmplvsca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 4 | ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 10 | 3 8 4 9 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 11 | 10 | sseli | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 12 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 13 | eqid | ⊢ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) | |
| 14 | 12 2 8 9 13 6 | resspsrvsca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) → ( 𝑋 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 15 | 11 14 | sylanr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 16 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 3 8 4 | mplval2 | ⊢ 𝑈 = ( ( 𝐼 mPwSer 𝐻 ) ↾s 𝐵 ) |
| 18 | eqid | ⊢ ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 19 | 17 18 | ressvsca | ⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 20 | 16 19 | ax-mp | ⊢ ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( ·𝑠 ‘ 𝑈 ) |
| 21 | 20 | oveqi | ⊢ ( 𝑋 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) |
| 22 | fvex | ⊢ ( Base ‘ 𝑆 ) ∈ V | |
| 23 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 24 | 1 12 23 | mplval2 | ⊢ 𝑆 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑆 ) ) |
| 25 | eqid | ⊢ ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 26 | 24 25 | ressvsca | ⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 27 | 22 26 | ax-mp | ⊢ ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ 𝑆 ) |
| 28 | fvex | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V | |
| 29 | 13 25 | ressvsca | ⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) ) |
| 30 | 28 29 | ax-mp | ⊢ ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
| 31 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 32 | 7 31 | ressvsca | ⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑃 ) ) |
| 33 | 16 32 | ax-mp | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑃 ) |
| 34 | 27 30 33 | 3eqtr3i | ⊢ ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) = ( ·𝑠 ‘ 𝑃 ) |
| 35 | 34 | oveqi | ⊢ ( 𝑋 ( ·𝑠 ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) |
| 36 | 15 21 35 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) 𝑌 ) ) |