This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | |- S = ( I mPoly R ) |
|
| ressmpl.h | |- H = ( R |`s T ) |
||
| ressmpl.u | |- U = ( I mPoly H ) |
||
| ressmpl.b | |- B = ( Base ` U ) |
||
| ressmpl.1 | |- ( ph -> I e. V ) |
||
| ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| ressmpl.p | |- P = ( S |`s B ) |
||
| Assertion | ressmplvsca | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | |- S = ( I mPoly R ) |
|
| 2 | ressmpl.h | |- H = ( R |`s T ) |
|
| 3 | ressmpl.u | |- U = ( I mPoly H ) |
|
| 4 | ressmpl.b | |- B = ( Base ` U ) |
|
| 5 | ressmpl.1 | |- ( ph -> I e. V ) |
|
| 6 | ressmpl.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | ressmpl.p | |- P = ( S |`s B ) |
|
| 8 | eqid | |- ( I mPwSer H ) = ( I mPwSer H ) |
|
| 9 | eqid | |- ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) |
|
| 10 | 3 8 4 9 | mplbasss | |- B C_ ( Base ` ( I mPwSer H ) ) |
| 11 | 10 | sseli | |- ( Y e. B -> Y e. ( Base ` ( I mPwSer H ) ) ) |
| 12 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 13 | eqid | |- ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) = ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) |
|
| 14 | 12 2 8 9 13 6 | resspsrvsca | |- ( ( ph /\ ( X e. T /\ Y e. ( Base ` ( I mPwSer H ) ) ) ) -> ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) |
| 15 | 11 14 | sylanr2 | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) ) |
| 16 | 4 | fvexi | |- B e. _V |
| 17 | 3 8 4 | mplval2 | |- U = ( ( I mPwSer H ) |`s B ) |
| 18 | eqid | |- ( .s ` ( I mPwSer H ) ) = ( .s ` ( I mPwSer H ) ) |
|
| 19 | 17 18 | ressvsca | |- ( B e. _V -> ( .s ` ( I mPwSer H ) ) = ( .s ` U ) ) |
| 20 | 16 19 | ax-mp | |- ( .s ` ( I mPwSer H ) ) = ( .s ` U ) |
| 21 | 20 | oveqi | |- ( X ( .s ` ( I mPwSer H ) ) Y ) = ( X ( .s ` U ) Y ) |
| 22 | fvex | |- ( Base ` S ) e. _V |
|
| 23 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 24 | 1 12 23 | mplval2 | |- S = ( ( I mPwSer R ) |`s ( Base ` S ) ) |
| 25 | eqid | |- ( .s ` ( I mPwSer R ) ) = ( .s ` ( I mPwSer R ) ) |
|
| 26 | 24 25 | ressvsca | |- ( ( Base ` S ) e. _V -> ( .s ` ( I mPwSer R ) ) = ( .s ` S ) ) |
| 27 | 22 26 | ax-mp | |- ( .s ` ( I mPwSer R ) ) = ( .s ` S ) |
| 28 | fvex | |- ( Base ` ( I mPwSer H ) ) e. _V |
|
| 29 | 13 25 | ressvsca | |- ( ( Base ` ( I mPwSer H ) ) e. _V -> ( .s ` ( I mPwSer R ) ) = ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) ) |
| 30 | 28 29 | ax-mp | |- ( .s ` ( I mPwSer R ) ) = ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) |
| 31 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 32 | 7 31 | ressvsca | |- ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) |
| 33 | 16 32 | ax-mp | |- ( .s ` S ) = ( .s ` P ) |
| 34 | 27 30 33 | 3eqtr3i | |- ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) = ( .s ` P ) |
| 35 | 34 | oveqi | |- ( X ( .s ` ( ( I mPwSer R ) |`s ( Base ` ( I mPwSer H ) ) ) ) Y ) = ( X ( .s ` P ) Y ) |
| 36 | 15 21 35 | 3eqtr3g | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |