This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resipos.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| Assertion | resipos | ⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| 2 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } ∈ V | |
| 3 | 1 2 | eqeltri | ⊢ 𝐾 ∈ V |
| 4 | 3 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ V ) |
| 5 | 1 | resiposbas | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 6 | resiexg | ⊢ ( 𝐵 ∈ 𝑉 → ( I ↾ 𝐵 ) ∈ V ) | |
| 7 | basendxltplendx | ⊢ ( Base ‘ ndx ) < ( le ‘ ndx ) | |
| 8 | plendxnn | ⊢ ( le ‘ ndx ) ∈ ℕ | |
| 9 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 10 | 1 7 8 9 | 2strop | ⊢ ( ( I ↾ 𝐵 ) ∈ V → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) ) |
| 11 | 6 10 | syl | ⊢ ( 𝐵 ∈ 𝑉 → ( I ↾ 𝐵 ) = ( le ‘ 𝐾 ) ) |
| 12 | equid | ⊢ 𝑥 = 𝑥 | |
| 13 | resieq | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) | |
| 14 | 13 | anidms | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( I ↾ 𝐵 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) |
| 15 | 12 14 | mpbiri | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ( I ↾ 𝐵 ) 𝑥 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ( I ↾ 𝐵 ) 𝑥 ) |
| 17 | resieq | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 18 | 17 | biimpd | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 → 𝑥 = 𝑦 ) ) |
| 19 | 18 | adantrd | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 21 | eqtr | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑧 ) | |
| 22 | 21 | a1i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑧 ) ) |
| 23 | simpr1 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 24 | simpr2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 25 | 23 24 17 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 26 | simpr3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 27 | resieq | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑦 = 𝑧 ) ) | |
| 28 | 24 26 27 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑦 = 𝑧 ) ) |
| 29 | 25 28 | anbi12d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑧 ) ↔ ( 𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ) ) ) |
| 30 | resieq | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑥 = 𝑧 ) ) | |
| 31 | 23 26 30 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( I ↾ 𝐵 ) 𝑧 ↔ 𝑥 = 𝑧 ) ) |
| 32 | 22 29 31 | 3imtr4d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( I ↾ 𝐵 ) 𝑦 ∧ 𝑦 ( I ↾ 𝐵 ) 𝑧 ) → 𝑥 ( I ↾ 𝐵 ) 𝑧 ) ) |
| 33 | 4 5 11 16 20 32 | isposd | ⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ Poset ) |