This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resipos.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| Assertion | resipos | |- ( B e. V -> K e. Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| 2 | prex | |- { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. _V |
|
| 3 | 1 2 | eqeltri | |- K e. _V |
| 4 | 3 | a1i | |- ( B e. V -> K e. _V ) |
| 5 | 1 | resiposbas | |- ( B e. V -> B = ( Base ` K ) ) |
| 6 | resiexg | |- ( B e. V -> ( _I |` B ) e. _V ) |
|
| 7 | basendxltplendx | |- ( Base ` ndx ) < ( le ` ndx ) |
|
| 8 | plendxnn | |- ( le ` ndx ) e. NN |
|
| 9 | pleid | |- le = Slot ( le ` ndx ) |
|
| 10 | 1 7 8 9 | 2strop | |- ( ( _I |` B ) e. _V -> ( _I |` B ) = ( le ` K ) ) |
| 11 | 6 10 | syl | |- ( B e. V -> ( _I |` B ) = ( le ` K ) ) |
| 12 | equid | |- x = x |
|
| 13 | resieq | |- ( ( x e. B /\ x e. B ) -> ( x ( _I |` B ) x <-> x = x ) ) |
|
| 14 | 13 | anidms | |- ( x e. B -> ( x ( _I |` B ) x <-> x = x ) ) |
| 15 | 12 14 | mpbiri | |- ( x e. B -> x ( _I |` B ) x ) |
| 16 | 15 | adantl | |- ( ( B e. V /\ x e. B ) -> x ( _I |` B ) x ) |
| 17 | resieq | |- ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y <-> x = y ) ) |
|
| 18 | 17 | biimpd | |- ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y -> x = y ) ) |
| 19 | 18 | adantrd | |- ( ( x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) |
| 20 | 19 | 3adant1 | |- ( ( B e. V /\ x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) |
| 21 | eqtr | |- ( ( x = y /\ y = z ) -> x = z ) |
|
| 22 | 21 | a1i | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x = y /\ y = z ) -> x = z ) ) |
| 23 | simpr1 | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) |
|
| 24 | simpr2 | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) |
|
| 25 | 23 24 17 | syl2anc | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) y <-> x = y ) ) |
| 26 | simpr3 | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) |
|
| 27 | resieq | |- ( ( y e. B /\ z e. B ) -> ( y ( _I |` B ) z <-> y = z ) ) |
|
| 28 | 24 26 27 | syl2anc | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y ( _I |` B ) z <-> y = z ) ) |
| 29 | 25 28 | anbi12d | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) <-> ( x = y /\ y = z ) ) ) |
| 30 | resieq | |- ( ( x e. B /\ z e. B ) -> ( x ( _I |` B ) z <-> x = z ) ) |
|
| 31 | 23 26 30 | syl2anc | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) z <-> x = z ) ) |
| 32 | 22 29 31 | 3imtr4d | |- ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) -> x ( _I |` B ) z ) ) |
| 33 | 4 5 11 16 20 32 | isposd | |- ( B e. V -> K e. Poset ) |