This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for remul , immul , and cjmul . (Contributed by NM, 28-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | remullem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∧ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∧ ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 2 | replim | ⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 3 | 1 2 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 4 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 11 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 12 | 7 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 13 | 6 12 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 14 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 17 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 19 | 18 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 20 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 21 | 7 19 20 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 22 | 13 16 21 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 23 | 6 12 16 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 24 | 6 12 21 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 25 | 23 24 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 26 | 5 15 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 27 | 26 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 28 | 12 21 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 29 | 12 16 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 30 | 6 21 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 31 | 27 28 29 30 | add42d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) + ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 32 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 33 | 32 10 32 19 | mul4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 34 | ixi | ⊢ ( i · i ) = - 1 | |
| 35 | 34 | oveq1i | ⊢ ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( - 1 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 36 | 9 18 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 37 | 36 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 38 | 37 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 39 | 35 38 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 40 | 33 39 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 42 | 27 37 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 43 | 41 42 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 44 | 9 15 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 46 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℂ ) | |
| 47 | 7 45 46 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 48 | 5 18 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 50 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) | |
| 51 | 7 49 50 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 52 | 47 51 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) + ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 53 | 32 10 16 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) = ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 54 | 6 32 19 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 55 | 53 54 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) + ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 56 | 32 49 45 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 57 | 52 55 56 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 58 | 43 57 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) + ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 59 | 25 31 58 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 60 | 3 22 59 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 61 | 60 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) ) |
| 62 | 26 36 | resubcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 63 | 48 44 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 64 | crre | ⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) → ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 65 | 62 63 64 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 66 | 61 65 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 67 | 60 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) ) |
| 68 | crim | ⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) → ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) | |
| 69 | 62 63 68 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 70 | 67 69 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 71 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 72 | remim | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 73 | 71 72 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 74 | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 75 | remim | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) = ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) | |
| 76 | 74 75 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 77 | 16 21 | subcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 78 | 6 12 77 | subdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 79 | 27 30 29 28 | subadd4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 80 | 6 16 21 | subdid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 81 | 12 16 21 | subdid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 82 | 80 81 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 83 | 65 61 43 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 84 | 70 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) = ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 85 | 54 53 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 86 | 56 84 85 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 87 | 83 86 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 88 | 79 82 87 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 89 | 76 78 88 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 90 | 73 89 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) |
| 91 | 66 70 90 | 3jca | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∧ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∧ ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) ) |