This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the conjugate of a complex number. The value is the real part minus _i times the imaginary part. Definition 10-3.2 of Gleason p. 132. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjval | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ) | |
| 2 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 4 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 9 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 10 | 6 8 9 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 11 | 5 10 5 | ppncand | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
| 12 | 3 11 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
| 13 | 4 4 | readdcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 14 | 12 13 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 15 | 5 10 10 | pnncand | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 16 | 2 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 17 | 6 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 18 | 17 8 8 | adddid | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 19 | 15 16 18 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( i · ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 21 | 7 7 | readdcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) = ( i · ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 24 | 6 6 22 23 | mp3an12i | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) = ( i · ( i · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 25 | 20 24 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ) |
| 26 | ixi | ⊢ ( i · i ) = - 1 | |
| 27 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 28 | 26 27 | eqeltri | ⊢ ( i · i ) ∈ ℝ |
| 29 | remulcl | ⊢ ( ( ( i · i ) ∈ ℝ ∧ ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 30 | 28 21 29 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 31 | 25 30 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 32 | 5 10 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 33 | cju | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) | |
| 34 | oveq2 | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( 𝐴 + 𝑥 ) = ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( ( 𝐴 + 𝑥 ) ∈ ℝ ↔ ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℝ ) ) |
| 36 | oveq2 | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( 𝐴 − 𝑥 ) = ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( i · ( 𝐴 − 𝑥 ) ) = ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 38 | 37 | eleq1d | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ↔ ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) ) |
| 39 | 35 38 | anbi12d | ⊢ ( 𝑥 = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) → ( ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ↔ ( ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℝ ∧ ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) ) ) |
| 40 | 39 | riota2 | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) → ( ( ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℝ ∧ ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 41 | 32 33 40 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 + ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℝ ∧ ( i · ( 𝐴 − ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 42 | 14 31 41 | mpbi2and | ⊢ ( 𝐴 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 43 | 1 42 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |