This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| add4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | add42d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | add4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 5 | add42 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐷 + 𝐵 ) ) ) |