This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reltxrnmnf | |- A. x e. RR* ( -oo < x -> E. y e. RR y < x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
|
| 2 | reltre | |- A. x e. RR E. y e. RR y < x |
|
| 3 | 2 | rspec | |- ( x e. RR -> E. y e. RR y < x ) |
| 4 | 3 | a1d | |- ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) ) |
| 5 | breq1 | |- ( y = 0 -> ( y < x <-> 0 < x ) ) |
|
| 6 | 0red | |- ( x = +oo -> 0 e. RR ) |
|
| 7 | 0ltpnf | |- 0 < +oo |
|
| 8 | breq2 | |- ( x = +oo -> ( 0 < x <-> 0 < +oo ) ) |
|
| 9 | 7 8 | mpbiri | |- ( x = +oo -> 0 < x ) |
| 10 | 5 6 9 | rspcedvdw | |- ( x = +oo -> E. y e. RR y < x ) |
| 11 | 10 | a1d | |- ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) ) |
| 12 | breq2 | |- ( x = -oo -> ( -oo < x <-> -oo < -oo ) ) |
|
| 13 | mnfxr | |- -oo e. RR* |
|
| 14 | nltmnf | |- ( -oo e. RR* -> -. -oo < -oo ) |
|
| 15 | 14 | pm2.21d | |- ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) ) |
| 16 | 13 15 | ax-mp | |- ( -oo < -oo -> E. y e. RR y < x ) |
| 17 | 12 16 | biimtrdi | |- ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) ) |
| 18 | 4 11 17 | 3jaoi | |- ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) ) |
| 19 | 1 18 | sylbi | |- ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) ) |
| 20 | 19 | rgen | |- A. x e. RR* ( -oo < x -> E. y e. RR y < x ) |