This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogiso | ⊢ ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefiso | ⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) | |
| 2 | isocnv | ⊢ ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) → ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) |
| 4 | dfrelog | ⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) | |
| 5 | isoeq1 | ⊢ ( ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) → ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) |
| 7 | 3 6 | mpbir | ⊢ ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) |